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SOLUTION OF SYSTEMS O F  N O " E A R  EQUTIONS BY THE W H O D  O F  
DIFFEFENTIATION WITH RESPECT TO A PARAMETER 

M. N. Yakovlev 

The authors, of [l] and [2] proposed the  following method of 
differentiation with respect t o  a parameter fo r  solution of systems 
of nonlinear equations. 

Let  f ( x )  = (fl(xl ,e~*,xn),  f (x ...,xn 1, ..., f (X1,***,X 1) 
2 1' n n 

be a vector function of - n real variables. 
t i on  for  the  system 

In  order t o  find a s o h -  

f ( x )  = 0 (1) 

of n - r e a l  equations, we consider a system 

F(x, A )  = 0, ( 2 )  

depending on a real p a r a m e t e r  A, 1 E [0, 13, i n  such a manner tha t  
F(x, 1) = f ( x )  and a solution t o  t he  system F(x, 0 )  = 0 exists and 
can be found easily.  Let t h i s  solution be x * then, i n  order t o  

find a solution for  Eq. (1) we propose t o  d i f fe ren t ia te  ( 2 )  with 
respect t o  1, assuming that x i s  a function of h,  and t o  attempt t o  
solve the  Cauchy problem fo r  t he  d i f f e ren t i a l  equation thus obtained 
with the  in i t ia l  condition x (0)  = x 

0' 

a t  the  point A = 1. 

In  order t o  justify t h i s  method of solving systems of equa- 
0 

t ions we must prove tha t  t he  Cauchy problem thus obtained has a 
solution and, moreover, t he  solution is unique everywhere i n  the  
in te rva l  [0, 11. 
methods of introducing the  parameter h .  

Below we w i l l  construct such a proof for two 

1. Notation. Below w e  shall use the  following notation and 

assmqtions: 

i s  the  scaler  product of elements x and y i n  R , where R 

G i s  a domain i n  t h e  n-dimensional r e a l  space e; (x, y )  
n n i s  Euclidean; 



1 x is  a fixed point i n  G; 

J ( x )  (more b r i e f ly  J ( x ) )  i s  the  Jacobian matrix of t h e  function f; 

S(x r )  i s  the  set of points x 

r 

r* i s  the  least upper bound of the numbers r such that S(x 

and det J(x) # 0 (it is clear  tha t  r* * r ); 

i s  continuous and nondecreasing i n  the in te rva l  0 * r 5 I+ and i s  

such that 1 1  J 

f ( x )  i s  a function i n  the class  C ( G ) ;  
0 

f 
Rn such that 11 x - x 11 * r; 0 * r < 

is  the  least upper bound of t he  numbers r such that S(x , r )  C G; 
0 0 

0 0 

0' 
r )  C G 

D ( r )  i s  a function tha t  
0 

-1 
(x)  1 1  * D ( r )  when 11 x - x 1 1  * r < I+; 0 

r* 

( i f  r* = OD and the in tegra l  1 du converges, we assume that 
0 D ( u )  

A(*) = "), p* = A (r*); A-'(p), 0 5 p g p*, i s  the inverse of 
d r ) .  

theorem, which was stated by S. M. Lozinskiy (see [SI, p. 135, 
Theorem 1). 

In  the  proofs we w i l l  give below we w i l l  use the  following 

Theorem: If 1 )  f ( x  ) 1 1  < p*, the equation f ( x )  = 0 has a 
0 

unique solution fi, - i f  I+ = p* = 9 -  and 

Below we w i l l  use the  following 

Lemma (uniqueness of solution). ~ If (J(x)h, h )  2 m ( r )  (h, h),  

r < r*, h E R , the solution t o  the  equatipn 
n 

m ( r )  > 0 for 11 x - x 1 1  0 

2 



f(x) = 0 i s  unique inside t h e  sphere S(x r*). 
0 . -  

2. Theorem 1. k - b *  

and - - ~. assume -~ .- _- t ha t  the  following _. conditions are sa t i s f ied :  

(a) (J (x) h, h )  2 m ( r )  (h, h), x E S (x 

t h a t  i s  monotonic - _  and-nonincreasing . i n  t he  in te rva l  0 * r r)c, 

( b )  1 1  f(Xo) I /  < P*, where PH = A* (*>, A* ( r )  = 

( r )  = min (1, m ( r )  

( i f  - Ijc = 

probgeg - ._ f o r  - t he  d i f f e ren t i a l  . ~~ . . . . equation 

/I47 

r), m ( r )  > 0, -3 a f'unct-x 
0 )  

r 

0 
m* ( u )  du, m* 

W 

and - m*(u) du converges, then p* = =). Then the  Cauchy 
0 

dx -1 a = [(l - X) E -I- Xf'(x)] [X - x - f(x)] 0 

with - the  i n i t i a l  condition x ( 0 )  = x 

solution, .---_ everywhere i n  the  in te rva l  [0, 11. 

has a solution, indeed, a unique 
0 - - - - -  --- 

*Such a method for introducing a parameter was discussed for special  
cases ea r l i e r  i n  [4] and [ 5 ]  (see [ 6 ]  as w e l l ) .  
i z e s  ( i n  par t icular ,  includes cases i n  which the  equation f(x) = 0 
has more than one solut ion)  and strengthens (we are relieved of t h e  
necessity of determining t h e  behavior of t h e  f'unction f ( x )  and i t s  
derivative f'(x) at inf in i ty ;  i n  order t o  guarantee solvabi l i ty  of 
t he  Cauchy problem, t h e  authors of [4] had t o  carry out such an 
investigation) t h e  results obtained there. 

This theorem general- 
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Proof. W e  shall first show tha t  Eq. (2.1) uniquely de- 
termines the Function x(k), which is  defined on the in te rva l  
O S h h l .  

For each fixed [0, 11, sa t i s fac t ion  of .conditions a )  and 
b )  implies sa t i s fac t ion  of the conditions of S. M. Lminskiy’s 
theorem and the  le” about uniqueness of solutions fo r  the  func- 
t i o n  F(x, I ) .  
unique solution x(h) f o r  Eq. (2.1), i.e., t h i s  a l s o  implies tha t  
a function sat isfying (2.1) i s  defined on [0, 11 and 

It follows that fo r  each I [0, 1 1  there  exis ts  a u 

We shall now show tha t  it i s  differentiable.  The conditions 
of the  implicit-function theorem fo r  the  function F(x, h )  are 
satisfied a t  each point (1, x(h)). Indeed, 

1) F(x ( A ) ,  A )  = 0;  

2)  [F; (x, exists fo r  a l l  x such that 

du 
Ilx - xoll + = - and hE [0, 13 

0 

and, therefore, for  (x  ( h ) ,  1) (by v i r tue  of (2.3)). 
W e  can use the  implicit-function theorem t o  conclude that i n  

sane neighborhood h there exis ts ,  for  each he  [0, 1 1 ,  some continu- 
ous and different iable  f’unction tha t  sa t i s f ied  Eq. (2.1) and, by 
vir tue of the  uniqueness of t h e  solution for  t h i s  equation, coin- 
cides with x (1) for  each he [0, 13; thus 
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fo r  each point [0, 1 3 .  

d i f f e ren t i a l  equation (2.2) with the  i n i t i a l  value x(0)  = xo fo r  

11 and functions x ( h )  whose values belong i n  the  sphere S(x 

0 4 h. g 1 and are such t h a t  x(0) = xo. 

uniqueness of t h e  solution t o  (2.1) imply that the  solution of t he  
Cauchy problem for  (2.2) with t h e  i n i t i a l  condition x(0) = xo is  
unique. 

W e  s h a l l  now prove t h a t  t he  uniqueness of t h e  solution fo r  

[0, 13. Equation (2.2) i s  equivalent t o  Eq. (2.1) f o r  a l l  he [0, 
I+) when 

0’ 
m r e s s i o n  (2.3) and the  

Corollary 1. Assume that t h e  following conditions are satis- 
f ied : 

a )  (J (x )  h, h )  2 m (h, h), m > 0, where Ilx - xoll 4 r 4 I+, 
1 

m* b )  - 11 f(xO)ll r, where m* = min h, m]. 

Then t h e  Cauchy problem f o r  (2.2) with the  i n i t i a l  condition x(0) = 
= x has a solution, indeed, a unique solution, everywhere i n  t h e  in- 

terval 0 4 X 1. 
0 

Corollary 2. If (J (x )  h, h )  2 m (h, h), m > 0, fo r  a l l  x, 

h E R , t h e  Cauchy problem for (2.2) with the  i n i t i a l  condition 
x(0) = xo has a solution, indeed, a unique solution, everywhere i n  

the  in te rva l  0 4 h 4 1 for  any xo. 

parameter . 

n 

3. ‘ W e  shall now consider t h e  other method of introducing t h e  

Theorem 2. Let 
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t he  Cauchy problem for  the d i f f e ren t i a l  equation 

has a solution, indeed, a 
= xo with the  i n i t i a l  condition x(0) 

unique solution everywhere i n  the  in te rva l  0 5 x * 1. 
Proof. Again we use S. M. Lozinskiy's theorem and the  le" 

In  vir- 
about t he  uniqueness o f t h e  solution t o  conclude tha t  there  ex is t s  
a function x(h)  t ha t  satisfies (3.1) everywhere i n  [0, 11 .  
t ue  of the implicit-function theorem, whose conditions are satisfied 
by every point ( I ,  ~ ( h ) ) ,  he [0, 11 ,  t h i s  function x h )  i s  continuous 
and different iable  when he [O, 13 and s a t i s f i e s  (3.2 . Uniqueness 
i s  proved a s  i n  Theorem 1. 

Corollary 3. If 

a )  ( j  (x )  h, h )  2 m (h, h),  m > 0 for Ilx - xo/I * r < I-n, 

then the  Cauchy problem for (3.2) with the  i n i t i a l  condition x(0) = 
= x has a solution, indeed, a unique solution, everywhere i n  the  

in te rva l  o * h * 1. 
0 

Theorem 3 .  If I-n = p* = t he  Cauchy problem for  Eq. (3.2) 

0 with the  i n i t i a l  condition x(0)  = x has a solution, indeed, a 

0. 
unique solution, everywhere i n  the  in te rva l  0 * h * 1 f o r  any x 

The proof i s  based on S. M. Lozinskiy's theorem and i s  similar 
t o  t he  proofs o f  Theorems 1 and 2. 

4. Application of Galerkin's method or  t he  finite-difference 
method t o  nonlinear problems leads t o  the  necessity of solving non- 
l inear  systems of a f i n i t e  number of equations with a f i n i t e  nuniber 
of unknowns. In  order t o  solve such systems, we can use the  method 
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of' d i f ferent ia t ion with respect t o  a parameter. 
W e  shall now discuss examples. 
Assume  t ha t  on a l inear  s e t  t ha t  i s  dense i n  a r e a l  mlbert 

space H we assign a nonlinear operator P(X) whose domain of values 
l ies i n  H. Assume t ha t  t he  operator P(x) i s  weakly Hatondifferen- 
t i a b l e  i n  0, and l e t  (P' ( x )  h, h )  2 m (h, h), m > 0; x, h a ,  
shall. solve the  equation p(x) = 0 by the  Galerkin method, i.e., on 
taking elements l inear ly  independent {qk3;,, % €9 as a coordinate 

system, we will attempt t o  find an approximate solution i n  t h e  form 

W e  

and determine the  c 

k = 1, 2, .-., n. The Jacobian matrix of t h i s  system, which i s  

from the  system of equations ( P  (un), cpk) = 0, k 

- clear ly  representable i n  the  form {(P' (u,) (pi, 'pk)3y,k=, = J, i s  

invert ible  for  a l l  c = {c In ERn and llJ-lll * ~ / I I I ~ ( ~ )  , where 
k k=l Rn 

i s  the  smallest character is t ic  value of the  G r a m  matrix of t he  
n 

k k= l  system {cp  3 
method of different ia t ion with respect t o  a parameter, systems (2.2) 
or (3.2) are solvable everywhere i n  [0, 11, no mtter what t he  
i n i t i a l  value x 

and, consequently, when they are solved with the  

0. 

Schechter [ 7 ]  discussed the problem of uniform posit ive defi-  /149 
niteness o f t h e  Jacobian matrix of a system of f i n i t e  difference 
equations for  the  case i n  which the  finite-difference method i s  ap- 
plied t o  var ia t ional  problems. That is, it was exactly he who d is -  
cussed the  var ia t ional  problem of the  min imum JJ F(x, y, p, q )  dxdy 

under the  constraint ul 
posit ive definiteness of t he  Jacobian matrix. Note that the  result 
of t h i s  paper applies t o  the  case i n  which the  integrand i s  the  more 
general function (x, Y, P, 9, U )  = F(x, Y, p, 9 )  + Fl(x, Y, u), if 
the  following condition is  a l so  satisfied: 

* 

D 
c = b(x, y )  and derived conditions for  uniform r 

7 



Comparison o f t h e  results of [7] with Corollary 2 or Theorem 
3 of the  present a r t i c l e  makes it possible t o  assert t h e  solvabi l i ty  
of the  Cauchy problem f o r  t h e  corresponding systems of d i f fe ren t ia l  
equations of t he  form (2.2) or  (3.2) everywhere i n  t h e  in te rva l  
o * h 5 1 for  any i n i t i a l  value x 0' 

Received: 23 April 1963 
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